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Abstract: Coding theory has started with the intention of detection and correction 
of errors which have occurred during communication. Different types of errors are 
produced by different types of communication channels and accordingly codes are 
developed to deal with them. In 2013 Sharma and Gaur introduced a new kind of an 
error which will be termed “key error”. This paper obtains the lower and upper 
bounds on the number of parity-check digits required for linear codes capable for 
detecting such errors. Illustration of such a code is provided. Codes capable of 
simultaneous detection and correction of such errors have also been considered.  
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1. Introduction 

With the advancement of information technology, different types of new problems 
have appeared. Since error control coding is now not limited to distant 
communication only, mathematics is needed which can suitably match the 
characteristics of the device for which the coding is required. The communication 
channels, like the automata or the electronic devices, have varying characteristics. 
The errors patterns which they produce have different characteristics. We need to 
consider only those patterns that need to be detected/corrected rather than the 
wasted capacity of detecting/correcting non-errors by default. 

Let us consider the keyboard of a computer; it has keys for various numbers 
and other symbols. Imagine punching a number or an alphabet key on it. While 
word processing, one may erroneously strike a key on one or two positions on either 
side of the correct key, rather than any key on the keyboard. These positions will 
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constitute the set of errors for the number or the symbol key pressed. S h a r m a and 
G a u r [11] have discussed such errors and done a study on such errors with respect 
to S-K metric. We call such errors key errors and they are defined as follows: 

Definition 1. An i-key error of length b is a vector such that the i-th 

component is non-zero and the other non-zero components are confined to some 
immediate b consecutive components in either side of the i-th component. 

It may be noted that in a vector of length n, for such error, the entry error, i.e., 
i-th component may be the first position and go up to the n-th position. If the error 
entry is the first position, then the non-zero components are confined to immediate 
b consecutive components on the right side of the first position. If the error entry is 
the second position, then non-zero components are confined to one position on the 
left side of the second position and to the immediate b consecutive components on 
the right side of the second position. In the same way, if the error entry is the n-th 
position, then the non-zero components are confined to the immediate b consecutive 
components on the left side of n-th component.  

For example, in a vector of length 6 over a field of 3 elements GF(3), the key 
errors of length 2 are   
{ {

22
122120 , { {

22
022120 , { {

22
002120 , {212000

2
, {212000

2
, { {0012112

22
, { {012202

22

, { {001222
21

, etc. 

It is important to know the ultimate capabilities and limitations of error 
correcting codes. This information, along with the knowledge of what is practically 
achievable, indicates which problems are virtually solved and which need further 
work. This was initiated by H a m m i n g [7] who was concerned with both code 
constructions and bounds. The bounds on the number of parity check symbols 
determine the efficiency of a code. The less the number of parity check symbols in 
a code is, the greater the rate of the code information is.  

The paper presents a study on the bounds of linear codes detecting key errors. 
Detecting error is one of the very important studies to researchers. For more details 
on such studies, one may refer to [1-7]. 

The paper is organized as follows: 
Section 1 gives a brief review of the importance of the study of the paper, 

basic background and definition. In Section 2 we obtain the lower and upper bounds 
on the number of parity check digits of linear codes that detect any key error of 
length b or less. This is followed by an illustration of such a code in Section 3. 
Section 4 presents a bound on parity check digits for codes capable of detecting and 
simultaneously correcting such errors. Section 5 gives the conclusion. 

Further on a linear code will be considered as a subspace of the space of all n-
tuples over GF(q). The distance between two vectors will be considered in the sense 
of Hamming. 

2. Codes detecting key errors 

We consider linear codes over GF(q) that are capable of detecting any key error of 
length b or less. The error patterns to be detected must not be a codeword. In other 
words, we consider codes that have no key error of length b or less as a code word. 
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Firstly, we obtain a lower bound over the number of parity-check digits required for 
such a code. The proof is based on the technique used in Theorem 4.13, P e t e r s o n 
and W e l d o n [8]. 

Theorem 1. Any (n, k) linear code over GF(q) that detects any key error of 
length b or less must satisfy  

qn–k ≥ 
1 for 2,
1 ( 1)( 2) for 2.

b q
b q q q

+ =⎧
⎨ + − − ≠⎩

 

P r o o f:  The result will be proved on the basis that no detectable error vector 
can be a code word. 

Let V be an (n, k) linear code over GF(q). Let X be the set of all vectors, such 
that the non zero components are confined to the first 2b positions in the following 
ways:  

(i) for q=2,   the first 2b positions are  
4847648476 bb

yx 00...00000...000  
4847648476 bb

yx 00...00000...000  
4847648476 bb

yx 00...00000...000  
.  .  . 
.  .  . 

4847648476 bb

yx 0...00000...0000  
where x=y=1; 

(ii) for q≠2,   the first 2b positions are  
4847648476 bb

yx 00...00000...000  
4847648476 bb

yx 00...00000...000  
4847648476 bb

yx 00...00000...000  
.  .  . 
.  .  . 

4847648476 bb

yx 0...00000...0000  
where x, y belong to GF(q)–{0} and x≠y. 

We claim that two vectors of the set X must belong to a different coset of the 
standard array. 

Assume on the contrary, that there are two vectors, say x1, x2 in X belonging to 
the same coset of the standard array. Then their difference viz. x1 – x2 must be a 
code vector. But x1 – x2 is a vector whose all non zero components are confined to 
2b or less consecutive components, in which the gap of components between any 
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two consecutive non zero components is less than b, i.e., x1 – x2 is a key error of 
length b or less, which is a contradiction. Thus all the vectors in X must belong to 
distinct cosets of the standard array. The number of such vectors over GF(q), 
including the vector of all zero, is clearly:  

(i) 1+b    for q = 2, 
(ii) 1+b(q–1)(q–2)  for q ≠ 2. 
Since the number of available cosets is qn–k, so 

qn–k ≥ 
1 for 2,
1 ( 1)( 2) for 2.

b q
b q q q

+ =⎧
⎨ + − − ≠⎩

 

Hence the theorem is proved ■ 
In the next theorem, an upper bound on the number of check digits required for 

the construction of a linear code mentioned in Theorem 1 is provided. This bound 
assures the existence of a linear code that can detect all key errors of length b or 
less. The proof is based on the well known technique used in Varshomov-Gilbert 
Sacks bound by constructing a parity check matrix for such a code (refer to S a c k s 
[10], also Theorem 4.7 of P e t e r s o n  and  W e l d o n  [8]). 

Theorem 2. There exists an (n, k) linear code over GF(q) that has no key error 
of length b or less as a code word provided that  

N–k > loqq[1+ q2b–1(q–1)]. 
P r o o f:  The existence of such a code will be shown by constructing an 

appropriate (n–k)×n parity-check matrix H. The requisite parity-check matrix H will 
be constructed as follows:  

Select any non-zero (n–k)-tuples as the first n–1 columns h1, h2, ..., hn–1 
appropriately, we lay down the condition to add n-th column hn such that hn must 
not be a linear combination of immediately preceding consecutive b columns, 
together with the sum of the preceding (b+1)-th column, and along with a linear 
combination of immediately preceding consecutive b columns after the (b+1)-th 
column.  

In other words, 
hn ≠ (un–1 hn–1 + un–2 hn–2 + …….. + un–b+1 hn–b+1) + un–b hn–b + 

+ (un–b–1 hn–b–1+ un–b–2 hn–b–2 + ……..+ un–2b hn–2b), 
where ui ∈GF(q) and un–b ≠ 0. 

This condition ensures that no key error of length b or less will be a code 
word, which thereby means that the code will be able to detect key errors of length 
b or less.  

The number of ways, in which the coefficients ui can be selected, including the 
vector of all zeros, is 

1 + qb–1(q–1)qb. 
In the worst case, all these linear combinations might yield a distinct sum. 
Therefore a column hn can be added to H provided that 

qn–k > 1+ q2b–1(q–1), 
or, 
   n–k > loqq[1+ q2b–1(q–1)].    ■ 
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Remark 1.  It is worth mentioning that parity check digits n–k do not depend 
on n. Thus the above theorem is valid for any value of n (n > 2b). 

3. An illustration 

Consider a (8, 4)-binary code with 4×8 parity check matrix H given by 

H= .

10001000
01000100
00100010
00010001

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

 

This matrix has been constructed by the synthesis procedure outlined in the 
proof of Theorem 2, by taking b = 2, n = 8 over GF (2). It can be seen from Table 1 
that the syndromes of any key error of length 2 or less are all nonzero. This shows 
that the code that is the null space of this matrix can detect all key errors of length 2 
or less. 

Table 1. Error patterns and syndromes   
Error patterns Syndromes Error patterns Syndromes 

10000000 1000 00111100 1111 
11000000 1100 01110100 0011 
10100000 1010 01111100 1011 
11100000 1110 00001000 1000 
01000000 0100 00001100 1100 
01100000 0110 00001010 1010 
01010000 0101 00001110 1110 
01110000 0111 00101100 1110 
11010000 1101 00101010 1000 
11110000 1111 00101110 1100 
00100000 0010 00011010 1011 
00110000 0011 00011110 1111 
00101000 1010 00111010 1001 
00111000 1011 00111110 1101 
10110000 1011 00000100 0100 
10101000 0010 00000110 0110 
10111000 0011 00000101 0101 
01101000 1110 00000111 0111 
01111000 1111 00010110 0111 
11101000 0110 00010101 0100 
11111000 0111 00010111 0110 
00010000 0001 00001101 1101 
00011000 1001 00001111 1111 
00010100 0101 00011101 1100 
00011100 1101 00011111 1110 
01011000 1101 00000010 0010 
01010100 0001 00000011 0011 
01011100 1001 00001011 1011 
00110100 0111 00000001 0001 
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4. Simultaneous detection and correction of key errors 

In this section we determine the extended Reiger’s bound (refer to R e i g e r [9]; 
also Theorem 4.15 of P e t e r s o n and W e l d o n [8]) for simultaneous detection 
and correction of key errors. The following theorem gives a bound on the number of 
parity-check digits for a linear code that simultaneously detects and corrects such 
errors. 

Theorem 3. An (n, k) linear code over GF(q) that corrects all key errors of 
length b or less must have at least   

⎩
⎨
⎧

≠−−+
=+

2for]2)(1(21[log
,2for)21(log

qqqb
qb

q

q  

parity-check digits.  
Further, if the code corrects all key errors of length b or less and 

simultaneously detects all key errors of length d (> b) or less, then the code must 
have at least   

⎩
⎨
⎧

≠−−++
=++

2for]2)(1)((1[log
,2for)1(log

qqqdb
qdb

q

q  

parity-check digits. 

P r o o f: In order to prove the first part, consider a key error of length 2b or 
less. Such a vector is expressible as a sum or difference of two vectors, each of 
which is a key error of length b or less. These component vectors must belong to 
different cosets of the standard array because both such errors are correctable errors. 
Accordingly, such a vector, viz. a key error of length 2b or less cannot be a code 
vector. Applying Theorem 1, such a code must have at least  

⎩
⎨
⎧

≠−−+
=+

2for]2)(1(21[log
,2for)21(log

qqqb
qb

q

q  

parity-check digits. 
For the second part, consider a key error of length b + d or less. Such a vector 

is expressible as a sum or difference of two vectors, one of which is a key error of 
length b or less and the other is a key error of length d or less. Both component 
vectors, one being a detectable error and the other being a correctable error, cannot 
belong to the same coset of the standard array. Therefore, such a vector cannot be a 
code vector, i.e., a key error of length b + d or less cannot be a code vector. Hence, 
according to Theorem 1, the code must have at least  

⎩
⎨
⎧

≠−−++
=++

2for]2)(1)((1[log
,2for)1(log

qqqdb
qdb

q

q  

parity check digits.  
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5. Conclusion 

This paper presents the bounds on parity checks for codes capable of detecting key 
errors. The bounds will determine the error-detection capability of a linear code. 
Correcting such errors will remain a further study, which the author will discuss in a 
future paper. 
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